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Abstract. The prescription given by Gautreau and Hoffman to generate axially symmetric 
electrovac solutions from the Weyl vacuum solutions in general relativity, is shown to be 
completely equivalent to the procedure given earlier by Harrison yielding, thus, only a 
known class of solutions of the Einstein-Maxwell equations. 

I t  is well known (Synge 1960) that every static line element that depends on at most two 
variables ( I ,  z )  can be reduced to the canonical isothermal form 

ds2 = -dt2 exp(2U)+(dr2+dz2)exp(2V-2U)+r2 d$’exp(-2U), (1) 

where U and V are functions of r and z only. In discussing the solutions of the field 
equations of general relativity which correspond to the line element given above. it is 
convenient to introduce two functions A I(r ,  z )  and v = v(r, z) defined by the system 
of equations 

AA+A1/r = 0 

v1 = r(Af-Ai), 
Av+A;+E,i  = 0 

v2  = 2rA112 

where AA A l l  + A Z 2 , A v  v l l + v Z 2 ,  the subscripts on the right of 2 and v indicate 
partial derivatives with respect to x1 = r and x2 = z and the superscripts denote, as 
usual, the powers. Apparently there are three equations in (2 ) ,  (3) and (4), but when (2) 
is satisfied, (3) are integrable and (4) is implied by the other two equations (2) and (3). 

In this note, we consider those classes of electrovac solutions which can be generated 
from the solutions of the empty space field equations R,, = 0. As is well known, the 
empty space field equations for the line element (1) are precisely the equations (2), (3) 
and (4) with 2 replaced by U and v replaced by V. Hence, it follows that with U = I 
and V = v, the metric (1) is a solution of the vacuum field equations provided, in addition, 
the conditions of elementary flatness are also satisfied (Synge 1960). To investigate 
non-null electrovac fields that correspond to (l), we can either use the coupled Einstein- 
Maxwell equations in their conventional form or the equivalent Rainich-Misner- 
Wheeler (RMW) equations (Misner and Wheeler 1957). Here, we adopt the RMW 
formalism as it does not require making special assumptions about the nature of the 
electromagnetic field and keeps geometry to the fore. Using (1) and the corresponding 
components of the Ricci tensor which are quoted in Synge (1960), it can be shown 
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that the Rainich algebraic conditions reduce to (Gopala Rao and Srinivasa Rao 
1973) 

( 5 )  

(6) 

A direct calculation shows that the complexion ofthe electromagnetic field is an arbitrary 
constant so that the differential RMW equations are automatically satisfied. Hence, any 
set of solutions ( U ,  V) of the equations (5) and (6) which yields a positive value for Rg 
(this is necessary to assure the positiveness of the electromagnetic field energy), gives an 
electrovac solution for the metric (1). Once U and I/ are so determined, one can im- 
mediately calculate the electromagnetic fields and also obtain some information about 
the nature of the sources of the fields represented by (1) (Gopala Rao and Srinivasa Rao 
1973). 

A number of special solutions of the equations (5) and (6) have been discussed in 
literature. These solutions include, in particular, those which can be generated from the 
vacuum functions A and v which were introduced earlier. For example, the results of 
Harrison (1965) when applied to the metric (l), imply that to every solution (A, v) of the 
equations (2), (3) and (4), there corresponds a solution ( U ,  V )  of the RMW equations 
(5) and (6) given by 

A V  = A U +  UJr- U:- U: 

(A U + U 1 /r)’ - ( U: - U: - Vl/r)’ = (2 U 1 U2 - v,/r)’. 

U U().) = A +In[ 1 + r’ exp( - 2A)] - ln(2A) 

=_ V ( i ,  v) = v + 2 ln[l + r2 exp( -U)] - 2 ln(2A) 

(7) 

(8) 

where A is an arbitrary constant. Similarly Gautreau and Hoffman (1970) have shown 
that 

(9) 

(10) 

U = ln(Br cosh E,) 

V = ln(r cosh’ A) + v 

with Ban arbitrary constant, satisfy (5) and (6). We will now demonstrate that these two 
prescriptions for generating electrovac solutions are one and the same. 

and p be any two solutions of the Laplace equation (2). Then, obviously 
1 = 1 + p is also a solution of (2) and it follows from (3) and (4) that the function ii which 
corresponds to 1 is given by 

Let 

Dl = “1 +r(p:-Cc:)+2r(Al1(l-A’p’) (11) 

9’ = “2 + 2 r w 2  +2r(AlP2 +A’Pl) (12) 

Aii+(A1+pl)’+(A2+pJ2 = 0. (13) 

Choosing p = In I ,  we have exp(1) = r exp(i), and on integrating (1 1) and (12), we get 

ii = v+2A+ln(fr), f = constant. (14) 

Clearly, the equation (13) is automatically satisfied. Now, using the Harrison pre- 
scription (7) and (8), we get 

U(x)  = ln(Br cosh A)  

V(1, i i )  = ln(r cosh’ A) + v + ln(B2f) 

where we have written A = 1/B. Choosing B’ = l/f, we see that this is precisely the 
prescription of Gautreau and Hoffman given in (9) and (10). 
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Thus, it is now evident that we may generate many such formulae by using suitable 
superposed solutions of the Laplace equation (2). As an example, consider 

U = - ln[a exp(i) + b exp( - %)] (15) 

v = v (16) 

where a and b are constants. These are clearly solutions of (5) and (6)  and form the 
content of the Weyl prescription (see Gautreau et al 1972) to generate electrovac solu- 
tions from the vacuum functions 2 and v. With E. --* I + l n r ,  we obtain from (14), (15) 
and (16), the ‘new’ prescription 

U = - In ar exp(i) +- exp( - i) i b l  r 

V = In[@ exp(2i + v)] 

to generate electrovac solutions from vacuum solutions. 
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